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Abstract 

Sodium fluoroacetate (1080) is a highly toxic metabolic poison that has the potential because of 

its lack of defined color, odor, and taste and its high water solubility to be intentionally or 

unintentionally ingested through food adulteration.  Although the mechanism of action for 1080 has 

been known since the 1950’s, no known antidote exists.  In an effort to better understand the 

cardiopulmonary impacts of 1080, we utilized whole-body plethysmography and telemeterized Sprague-

Dawley rats which allowed for the real-time measurement of respiratory and cardiac parameters 

following exposure using a non-invasive assisted-drinking method.  Overall, the animals showed marked 

depression of respiratory parameters over the course of 24 hours post-exposure and the development 

of hemorrhage in the lung tissue.  Tidal volume was reduced by 30% in males and 60% in females at 24 

hours post-exposure, and respiratory frequency was significantly depressed as well.  In telemeterized 

female rats, we observed severe cardiac abnormalities, highlighted by a 50% reduction in heart rate, 

75% reduction in systolic blood pressure, and a 3.5-fold lengthening of the QRS interval over the course 

of 24 hours.  We also observed a reduction in core body temperature of nearly 15oC.  Our study was able 

to describe the severe and pronounced effects of sodium fluoroacetate poisoning on cardiopulmonary 

function, the results of which indicate that both tissue specific and systemic deficits contribute to the 
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toxicological progression of 1080 intoxication and will need to be accounted for when developing any 

potential countermeasure for 1080 poisoning. 
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1. Introduction 

Sodium fluoroacetate (1080) is a colorless, odorless, tasteless, water-soluble metabolic poison 

that inhibits the citric acid cycle and reduces the rate of cellular metabolism [1, 2].  The United States 

tightly regulates the availability of the extremely toxic 1080 to sheep and goat farmers for managing 

coyote predation [2, 3], although other nations, including Australia, New Zealand, Mexico, Japan, South 

Korea, and Israel, use it as a rodenticide to control invasive and nuisance mammals [4-6].  Due to 1080’s 

lack of a defining sensory characteristic and ease of solubility, it has the potential for harm through 

means of intentional or unintentional food adulteration.  It is in that vein that in 2004 Rep. Peter 

DeFazio (D-Ore.) asked the Department of Homeland Security to ban its production due to terrorism 

fears [7, 8].  More recently, in March 2015, eco-terrorists in New Zealand threatened to poison infant 

and other dairy formula with 1080 due to their Department of Conservation’s controversial use of the 

chemical for pest control [9-11].  1080 has also been studied by nation states for potential use as a 

weapon, as evidenced by a CIA report that 1080 was found to be part of Saddam Hussein’s Iraqi 

Intelligence Service covert laboratories, which developed chemical materials for assassination [12].     

Fluoroacetate itself is not toxic, but must undergo a “lethal synthesis” [13] and be converted to 

fluorocitrate to elicit its effects.  Since fluoroacetate is stereochemically similar to acetic acid, it is able to 

interact with the enzymes in the citric acid cycle where it is converted to fluoroacetyl-CoA and then 

enters the citric acid cycle [14].  Citrate synthase catalyzes the reaction of fluoroacetyl-CoA and 

oxaloacetate to form the highly toxic compound fluorocitrate [15].  Fluorocitrate, specifically the (-)-

erythro-2-fluorocitrate (2R, 3R) isomer [16], inhibits aconitase and arrests the citric acid cycle, leading to 

increases in citrate and the depletion of ATP [17].  Although 1080 is highly toxic, only a small portion of 

fluoroacetate is actually synthesized to fluorocitrate, with rodent studies suggesting that only 1 - 2.5% of 



Acc
ep

ted
 M

an
us

cri
pt

fluoroacetate is eventually converted to fluorocitrate [18, 19].  1080 may also have direct effects on the 

mitochondria, causing mitochondrial dysfunction through increased swelling and loss of the proton 

gradient [17].  On the systemic level, seizures induced by 1080 poisoning are often attributed to the 

increase in citrate, which chelates Ca2+ in the central nervous system [20].  The primary process for 

clearing fluoroacetate from the body is mediated by a glutathione-S-transferase and therefore 

dependent on glutathione concentration [21].  Complete clearance of 1080 takes no less than 48 hours 

depending on the species [22, 23].   

The median lethal dose (LD50) of 1080 for humans is approximately 2-10 mg/kg [24], and 1080 

poisoning has a latent period of 0.5 to 6 hours before clinical symptoms are observed [23, 24], due to 

the necessary conversion of fluoroacetate to fluorocitrate.  Symptoms typically include nausea, 

vomiting, abdominal pains, salivation, irrational fear, weakness, tachypnea, cyanosis, sweating, and 

increased temperature [1, 25, 26].  The main clinical presentation of 1080 poisoning is metabolic 

acidosis, a symptom also observed in many disease states including heart failure, alcohol poisoning, 

several types of cancer, and malnutrition, among others [27].  Given the overlap of symptoms with many 

common diseases and no identified biomarker, 1080 poisoning is extremely difficult for medical 

professionals to correctly diagnose. Even if a correct diagnosis is made, no known antidote exists for 

1080, and current treatment protocols consist only of general supportive measures to maintain airway, 

breathing, and circulation [28].  Advances in therapeutics counteracting the effects of 1080 poisoning 

have been limited in their scope and success.  Acetate donors (acetate, ethanol, glycerol) have been 

shown to be partially effective in mice, guinea pigs, and rabbits [1, 23].  In vitro studies investigating 

antioxidant compounds (e.g., glutathione, n-acetylcysteine, cysteamine) have also been encouraging 

[29], but further evaluation is needed to assess their in vivo therapeutic effect. 
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In our study, we set out to assess the toxicological effects of 1080 in both male and female 

Sprague-Dawley rats, focusing on the cardiac and pulmonary impacts of the metabolic poison.  We 

utilized a non-invasive assisted-drinking ingestion method [30] to better model an accidental or 

intentional ingestion of 1080.  We feel that when compared to more traditional models of ingestion 

(e.g., oral gavage), the assisted-drinking method is less stressful on the animal and better replicates 

human ingestion, since the poison is free to interact with all facets and tissues of the digestive system.  

With the use of whole-body plethysmograph (WBP) chambers and telemeterized animals, we were able 

to record real-time respiratory function and cardiac parameters following administration of 1080 over 

the course of 24 hours, which allows for continuous measurement during the latency period and early 

time points of acute 1080 poisoning.  It is our hope to aid in the development of an antidote and novel 

clinical treatment strategies for 1080 intoxication, with our investigation into the cardiopulmonary and 

general toxicological deficits caused by this metabolic poison. 

2. Methods 

2.1. Chemicals.  Sodium fluoroacetate (CAT# N-13216-250MG) was purchased from Chem Service Inc. 

(West Chester, PA, USA) and dissolved in sterile water for injection (CAT# A1287301) (Thermo Fisher 

Scientific, Waltham, MA, USA). Formalin (CAT# 5705), hematoxylin (CAT# 72404), and eosin (CAT# 7111) 

were obtained from Thermo Fisher Scientific.  5% 5-sulfosalicylic acid (SSA) (CAT# S7422), glutathione 

(CAT# CS0260), 5,5’-dithiobis(2-nitrobenzoic acid) (DTNB) (CAT# D8130), dimethyl sulfoxide (DMSO) 

(CAT# D2650), glutathione reductase (CAT# G3664), glutathione assay buffer (CAT# CS02060), and β-

nicotinamide adenine dinucleotide 2’-phosphate reduced tetrasodium salt hydrate (NADPH) (CAT# 

NADPH-RO) were obtained from MilliporeSigma (St. Louis, MO, USA). 

2.2. Animals.  Male (300-400g) and female (150-250g) Sprague-Dawley rats (Charles River Laboratories, 

Wilmington, MA, USA) were housed individually under standard conditions with a 12 h light/dark cycle 
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and standard rat chow and water available ad libitum.  Telemeterized females were surgically implanted 

with HD-S21 probes ((Data Sciences International (DSI) St. Paul, MN, USA), placed in the ventral 

abdomen by DSI surgical staff and shipped after one week of recovery.  All research was conducted in 

compliance with the Animal Welfare Act and other federal statutes and regulations relating to animals 

and experiments involving animals. It adhered to principles stated in the Guide for the Care and Use of 

Laboratory Animals, National Research Council, published by the National Academy Press, 2011, and the 

Animal Welfare Act of 1966, as amended. The study protocol was approved by the Institutional Animal 

Care and Use Committee, United States Army Medical Research Institute of Chemical Defense 

(USAMRICD), Aberdeen Proving Ground, MD. 

2.3. Rat Median Lethal Dose. Both male and female Sprague-Dawley rats were utilized, and rats were 

administered sodium fluoroacetate via assisted drinking [30].  Briefly, rats were held upright, and a 200 

µl pipet tip filled with 75 µl of sodium fluoroacetate was placed in the side of the rat’s mouth.  The pipet 

tip was pointed to the back of the throat, and the solution was slowly injected into the mouth.  The 

animal continued to be held upright and the pipet tip was held in place until the animal drank the 

solution.  The median lethal dose (LD50) was determined by the Dixon-Massey median lethal dose 

determination method [31], wherein if an animal survived 24 hours after exposure to a given dose, the 

dose for the next animal increased by a log10(dose) interval, and if the animal died within 24 hours at a 

given dose, the dose for the next animal decreased by an equivalent log10(dose) interval. This dosing 

method continued one animal at a time until four reversals had been achieved or until the maximum 

number of animals per group was used.  In total, 8 male rats and 11 female rats were needed to 

calculate the LD50 via assisted drinking, which was determined to be 2.08 mg/kg (95% CI: 1.73, 2.49) and 

1.85 mg/kg (95% CI: 1.56, 2.19) for males and females respectively. 
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2.4.  In Vivo Toxicology Studies at 0.85 LD50.  For exposures, animals were individually placed into WBP 

chambers prior to administration of 1080 or water and permitted to acclimate for 10 min, after which 

baseline respiratory dynamics and cardiac parameters were recorded for 10 min.  After baseline, 

animals were removed from the WBPs and administered either sodium fluoroacetate via assisted 

drinking (as mentioned in the previous section) at 0.85 LD50 
(1.76 mg/kg for males and 1.52 mg/kg for 

females) or sterile water.  Immediately after administration, animals were returned to WBPs, where 

they remained for 24 hours.  Upon completion of the 24-hour monitoring period, animals were deeply 

anesthetized using an intramuscular injection of ketamine (90 mg/kg) in combination with xylazine (10 

mg/kg) and euthanized via exsanguination.  Bronchoalveolar lavage was performed on the left lobe 

using 3 ml of phosphate-buffered saline with an average recovery of 57 ± 11% (standard deviation).  

Blood was collected from the descending aorta.  Tissues were collected, processed, and flash frozen 

using liquid nitrogen.  Total number male and female cohorts were; 24 exposed male rats, 13 control 

male rats, 12 exposed female rats, and 5 control female rats. 

2.5.  Comparative Pathology of Tissues.  For hematoxylin and eosin (H&E) staining, tissues were held in 

10% neutral buffered formalin until fixation was complete.  The tissues were then trimmed to a 

thickness of 3 mm or less and processed in a routine manner.  The tissues were then embedded with 

paraffin and sectioned at 5 µm.  H&E staining was completed using the automated Leica ST5020 stainer 

and coverslipped by the Leica ST5030.  The finished product was then submitted to the pathologist for 

review.   

2.6. Blood Analysis.  For the comprehensive metabolic panel (CMP), blood was collected from the 

descending aorta and placed in an untreated collection tube and analyzed by an automated hematology 

analyzer for the following:  Albumin, the alkaline phosphatase, alanine aminotransferase, aspartate 

aminotransferase, blood urea nitrogen, calcium, creatine kinase, chloride, creatinine, enzymatic 

carbonate, gamma-glutamyl transferase, glucose, potassium, lactate dehydrogenase, sodium, total 
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bilirubin, and total protein.  Anion gap (AG) was calculated from the CMP results using the equation AG 

= (Na++K+) – (Cl-+eCO2). 

2.7. BALF Analysis.  Bronchoalveolar lavage fluid (BALF) was centrifuged at 4000 rpm for 10 minutes at 

10oC.  Supernatant was collected, aliquoted, and stored at -80°C.  For analysis, samples were thawed, 

and protein content was determined using a Pierce 660 nm protein assay reagent kit (CAT# 22662) 

(Thermo-Fisher Scientific) according to the manufacturer’s protocol using a 96 well plate and a 

Spectramax M5 microplate reader (Molecular Devices, Sunnyvale, CA, USA) utilizing SoftMax Pro 

software (v6.5, Molecular Devices) set to an absorbance point measurement at 660 nm.  Heme content 

was determined by calculating the absorbance of the BALF at 540 nm using a Spectramax M5 microplate 

reader, using a 96 well plate and an absorbance point measurement at 540 nm.  

2.8. Inflammatory Cytokine Analysis.  Blood from the descending aorta was collected into a serum 

separator tube, and serum was fractionated by centrifugation.  Serum samples were then aliquoted and 

frozen at -80oC.  On the day of the assay, samples were thawed, and the ProcartaPlex (CAT# EPX220-

30122-901) (Thermo-Fisher Scientific) Luminex multiplex immunoassay procedure was performed in 

accordance with the manufacturer’s instructions.  Samples were assayed in duplicate and allowed an 18-

hour incubation, then added into the 96-well plate containing the antibody coupled beads. The plate 

was run on a Bio-Plex 200 system (Bio-Rad Laboratories, Hercules, CA, USA) and analyzed with Bio-Plex 

manager software (v6.1, Bio-Rad Laboratories).  The ProcartaPlex immunoassay contained beads for the 

following proteins: Granulocyte-colony stimulating factor (G-CSF), granulocyte-macrophage colony 

stimulating factor (GM-CSF), interferon gamma (IFN-γ), interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-

10, IL-12 p70, IL-13, IL-17, monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory 

proteins-1α (MIP-1α), regulated on activation, normal T cell expressed and secreted (RANTES), 

monocyte-chemotactic protein 3 (MCP-3), macrophage inflammatory protein 2 (MIP2), interferon 

gamma-induced protein 10 (IP-10), Eotaxin, Growth-regluated oncogene alpha (GRO-α) and tumor 
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necrosis factor α (TNF-α).  Manufacturer’s assay range is; IL-1α: 12.2 - 50000 pg/mL; G-CSF: 3.7 - 15000 

pg/mL; IL-10: 9.8 - 40000 pg/mL; IL-17: 3.7 - 15000 pg/mL; IL-1β: 15.9 - 65000 pg/mL; IL-6: 4.9 - 20000 

pg/mL; TNF-α: 4.9 - 20000 pg/mL; IL-4: 1.2 - 5000 pg/mL; GM-CSF: 9.8 - 40000 pg/mL; IFN-γ: 9.8 - 40000 

pg/mL; IL-2: 4.9 - 20000 pg/mL; IL-5: 2.4 - 10000 pg/mL; IL-13: 4.9 - 20000 pg/mL; IL-12p70: 9.8 - 40000 

pg/mL; Eotaxin: 1.9 - 7700 pg/mL; GR- α: 11.4 - 46500 pg/mL; IP-10: 4.9 - 20100 pg/mL; MCP-1: 18.03 - 

75000 pg/mL; MCP-3: 3.5 - 14200 pg/mL; MIP - 1 alpha: 2.3-9500 pg/mL; MIP - 2: 0.6-2400 pg/mL; 

Rantes: 85.5 - 350000 pg/mL. 

2.9.  Cardiac Total Glutathione Analysis.  Frozen cardiac tissue was cryopulverized using a mortar and 

pestle; then 100 ± 10 mg of cryopulverized powder was added to 15 ml conical tubes, followed by 10 

volumes (in µl) of 5% SSA.  Conical tubes were inserted into the Omni Processing Rack attached to an 

Omni Prep Homogenizer and homogenized for 1 minute at 10,000 rpm.  Homogenized samples were 

then placed on ice for 10 minutes to allow settling and then centrifuged for 10 minutes at 4,700 rpm and 

4°C.  The lysate was then extracted.  To acquire appropriate starting concentration for the assay, a 4-fold 

dilution of lysate was performed.  Diluted samples were kept on ice until added to 96-well plates.  10 µl 

of prepared glutathione standard, diluted sample, and 5% SSA, all assayed in triplicate, were added into 

the designated standard, unknown and blank wells, respectively.  150 µL of working mixture, composed 

of 2.7% of 1.5 mg/mL DTNB in DMSO solution, 4.1 × 10-2% glutathione reductase and 97.3% of 1X assay 

buffer, was added into all 96 wells of the plate and then incubated for 5 minutes at room temperature. 

50 µL of 1.6 mg/ml NADPH was added into all 96 wells of the plate.  The absorbance of the wells was 

then measured at 412 nm using a Spectramax M5 microplate reader, performing a kinetic read at 1-

minute intervals for 5 minutes. 

2.10.  Data and Statistical Analysis.  Data are presented as the mean ± the standard deviation, unless 

otherwise noted.  Where appropriate, the 1080-exposed group was compared to the control group 

using a Student’s t-test with significance set to p < 0.05.  Specialized software and customized routines 
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were used to collect respiratory dynamics (FinePointe Software v2.3.1.16, DSI) and cardiac (Ponemah 

Software v5.2, DSI) data, and all raw data were exported and analyzed using custom-designed programs 

(Microsoft Visual Basic for Applications v7.0.1639; Microsoft Corporation; Redmond, WA, USA), 

spreadsheet software (Microsoft Excel v14.1.7166.5000 [32-bit]; Microsoft Corporation; Redmond, WA, 

USA), and statistical and graphing software (GraphPad Prism v5.04, v7.04; GraphPad Software, Inc.; La 

Jolla, CA, USA).  

 

3. Results 

3.1.  General Toxicity.   

We observed no significant difference between the LD50 for 1080 ingestion in male and female rats 

(Table 1) when utilizing the assisted-drinking method.  The calculated LD50s (male: 2.08 mg/kg 95% CI:  

1.73,2.49, female: 1.85 mg/kg 95% CI: 1.56, 2.19) were in agreement with previous studies in which oral 

gavage was utilized [2, 32, 33].  Following 1080 exposure, rats exhibited a latency period prior to major 

convulsions, in which we observed clinical signs including tongue fasciculation, frantic behavior, 

increased urination and defecation, facial tremors, tonus, clonus, and myoclonic jerk (Tables 2 and 3).  

Typical onset time of symptoms did not differ greatly between males and females, with the exception of 

muscle fasciculation, for which males had an earlier onset, and frantic behavior and motion arrest, 

which occurred later in males.  Onset of convulsions typically appeared without any immediately 

preceding overt signs or symptoms and were substantial.  When administered a 0.85 LD50 dose of 1080, 

the median times for onset of convulsions were 85 ± 21 minutes in males and 113 ± 5 minutes in 

females.  Both male and female rats that survived to 24 hours exhibited a significant decrease in body 

weight compared to control, with the exposed males’ body weights decreasing 8.9 ± 1.4% (p < 0.05, 

Student’s t-test, n = 13-18) and females’ weights decreasing 6.7 ± 1.2% (p < 0.05, Student’s t-test, n = 4-

5).  At 0.85 LD50 in male rats, we observed no changes in blood cell parameters (via complete blood 
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count, not shown), but saw significant decreases in albumin, alkaline phosphatase, chloride, potassium, 

and total protein, and significant increases in aspartate transaminase, creatinine, and blood urea 

nitrogen (Table 4).  The changes in the CMP could indicate impaired liver, heart, kidney, and lung 

function in animals dosed with 1080 [34-39].  Interestingly, we did not observe any significant change in 

AG (16.8 ± 3.6 mmol/L in controls vs. 15.1 ± 2.6 mmol/L in exposed), which is a typical indicator of 

metabolic acidosis [40].  We also observed no significant changes in circulating inflammatory cytokines, 

other than a slight increase in IL-17, at 24 hours in the male rats exposed to a 0.85 LD50 of 1080 (Table 

5). 

 

3.2.  Pulmonary Effects.   

No gross tissue damage was observed in either male or female rats exposed to a 0.85 LD50 dose 

of 1080.  H&E staining revealed hemorrhage in the lungs of 7 of the 8 rats exposed to 1080 (Figure 1), 

which occurred prior to euthanasia at 24 hours, as indicated by the appearance of surrounding 

macrophages removing the associated protein and fluid.  When performing bronchoalveolar lavage on 

the exposed animals, we observed pink-tinted fluid, a potential indicator of blood in the lungs.  Although 

some of the BALF displayed an elevated absorbance at 540 nm (absorbance of hemoglobin), we did not 

observe a statistically significant increase in the average absorbance of exposed male rats (Figure 2).  We 

did, however, see a statistically significant increase in BALF protein levels of exposed animals (Figure 2).  

Since we did not observe a corresponding statistically significant increase in circulating cytokines, the 

increase in BALF proteins can be interpreted as a local event rather than as a component of the systemic 

effects of 1080.  This conclusion is supported by the comparative pathology analyses of the heart, 

gastrointestinal tract, liver, kidney, and brain tissue, all of which revealed no observable signs of damage 

to any of those tissues.  
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The use of whole-body plethysmography following exposure to 0.85 LD50 1080 enabled us to 

quantify pronounced effects on respiratory function.  Almost immediately after ingesting 1080, tidal 

volume (TV) decreased markedly and remained depressed over the course of the 24-hour experiment 

(Figure 3).  This may indicate acute lung injury in the animals exposed to 1080 and would support the 

comparative pathology observed in those animals.  The decrease was more severe in female rats, ~60% 

reduction, as compared to males, ~30% reduction, at the end of the study.  We also observed a 

significant decrease in the respiratory frequency (f) in exposed animals, although the reduction occurs 

after the latency period is over and convulsions are observed.  Unlike TV, we observed a sharp increase 

in f at around 30 minutes after exposure, in both males and females.  Following the increase at 30 

minutes there is a prolonged decrease throughout the 24-hour observation period (Figure 4).  At around 

6 hours post-exposure, in both the males and females, f for the exposed animals is lower than for the 

controls.  The decrease in f in exposed animals of either sex eventually plateaued, with the males 

plateauing around 6 hours post-exposure and the females at 10 hours post-exposure.  We observed an 

increase in f for control animals corresponding with their normal active period of the day (post-exposure 

hours 2-18), which was noticeably absent in all exposed animals.  In total, the respiratory effects of 1080 

were pronounced and lasted over the course of our 24-hour observation, suggesting that pulmonary 

capacity is weakened and lung function is significantly impaired. 

 

3.3. Cardiac Effects.   

A cohort of female rats were implanted with telemetry devices that allowed for monitoring of 

heart rate, left ventricular pressure, and core body temperature over the course of the experiment.  

Once again, we administered a 0.85 LD50 dose of 1080 and observed the animals for 24 hours while 

collecting real-time physiological data.  We observed profound impacts of 1080 on cardiac function over 

the duration of our study.  During the latency period (2-hour period immediately after exposure and 
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prior to the observation of whole-body convulsions), the heart rate (HR) of animals dosed with 1080 was 

normal as compared to controls (Figure 5A).  Over the next 10 hours HR steadily declined from 

approximately 400 beats per minute (BPM) to 150 BPM.  For the remainder of the study, HR remained 

severely depressed (75% reduction from control) in exposed animals.  The decrease in HR corresponded 

with an approximate 3.5-fold increase in average QRS interval over the same time period (Figure 5B).  In 

humans, increased QRS interval has been implicated as an indicator of left ventricular dysfunction [41], 

suggesting that impaired cardiac function follows whole-body convulsions in exposed animals.  We also 

observed a steady decrease in systolic blood pressure (SYS) from 30 minutes post-exposure throughout 

the entire 24-hour study (Figure 5C), which resulted in a nearly 50% reduction in blood pressure in 

exposed animals by the end of the study. 

We were able to assess total glutathione levels in the heart 24 hours after exposure to 1080 

(Figure 6).  Glutathione is a endogenously synthesized antioxidant [42] and is necessary for the 

enzymatic defluorination and clearance of fluoroacetate from the body [21].  We observed in male rats 

exposed to a 0.85 LD50 dose of 1080 an approximately 50% reduction in total glutathione levels in the 

heart at 24 hours.  Although overall cardiac function was significantly impaired, with left ventricular 

dysfunction in particular, as indicated by prolonged QRS interval and reduced cardiac glutathione in 

animals exposed to 1080, comparative pathology found no observable tissue damage in the heart in any 

exposed animal at 24 hours.  This indicates that although cardiac function is clearly impacted, it may 

take more than 24 hours for any gross tissue damage to occur in animals exposed to 1080.    

We also observed a severe effect of 1080 on core body temperature (Figure 7), with a steady 

decrease in core body temperature in the 1080-exposed animals, starting around 30 minutes after 

exposure.  Over the course of the 24-hour study, the animals’ core body temperatures decreased 

dramatically, to approximately 22oC, an approximate 15oC (or 39.5%) reduction as compared to controls.  

The data could suggest severe impairment of exposed animals’ ability to thermoregulate, which 



Acc
ep

ted
 M

an
us

cri
pt

combined with many of the observed signs and symptoms of intoxication could indicate impairment of 

the autonomic system.  The decrease in core body temperature could also be an artifact from the 

weakened cardiac function, since hypothermia and cardiac failure have been linked in humans [43, 44].  

4.  Discussion 

Sodium fluoroacetate is a metabolic poison that is known to impair mitochondrial function 

through inhibition of the enzyme aconitase in the citric acid cycle [13, 14, 23].  This eventually leads to 

the clinical presentation of symptoms that typically include nausea, vomiting, abdominal pains, 

salivation, irrational fear, weakness, tachypnea, cyanosis, sweating, increased temperature [1, 25, 26], 

and death in humans when ingested (2 – 10 mg/kg [24]).  Although the mechanism of action for 1080 is 

known, research into therapeutics or diagnostics for intoxication has had limited success.   

Our study aimed to quantify cardiopulmonary impairment in Sprague-Dawley rats exposed to 

1080 through a non-invasive ingestion model [30] using real-time measurements of cardiac and 

respiratory parameters.  We utilized both male and female cohorts of Sprague-Dawley rats in our study 

and found comparable susceptibility to 1080 intoxication, general agreement in presentation of signs 

and symptoms of intoxication, overall depression of respiratory parameters following exposure to 1080, 

and similar gross histological observations between the sexes.  In the progression of signs and symptoms 

of intoxication, the only slight difference we observed between males and females was that after 

exposure to 1080 female rats exhibited frantic behavior sooner and more frequently than male rats.  In 

our model of exposure to a 0.85 LD50 dose of 1080, we observed a latency period of approximately 1.5 

hours (85 minutes in males, 113 minutes in females) before major symptoms of whole-body convulsions 

were observed.  We saw no significant difference in the median lethal dose between male and female 

rats (2.08 mg/kg for males and 1.85 mg/kg for females), which was in agreement with historical 

literature [2, 32, 33], thus validating the use of our assisted-drinking method.  A comprehensive 

metabolic panel in male rats indicated impaired heart, liver, kidney, and lung function.   
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We observed severely impaired respiratory function in both male and female rats administered 

a 0.85 LD50 dose of 1080, as indicated by a depression in f and TV.  The decrease in TV was more 

pronounced in the female rats (~60% reduction compared to ~30% reduction in males) and appears to 

be biphasic, with two periods of falling TV at 30 minutes and at 2-6 hours post-exposure, while the 

males have a single period of falling TV at approximately 45 minutes post-exposure.  Some of this 

difference, though, may be due to artifacts from the limited number of female rats in the study.  The 

decrease in body weight experienced in both the exposed male and female rats over 24 hours (8.94% 

decrease in males and 6.74% decrease in females) is only expected to contribute to a small portion of 

the reduction in TV [45], with the toxic effects of 1080 playing the major factor. The depression of 

respiratory function correlates with lung hemorrhage observed in both male and female rats 

administered 1080, which is in agreement with other reports of animals and humans with lung insults 

following 1080 intoxication [46-50]. 

We also report severe cardiac dysfunction in 1080–exposed, telemetered female rats.  We 

observed profound depression of both HR (approximately 50%) and SYS (75% reduction) over the course 

of our 24-hour study.   While HR only decreases after the latency period, an interesting finding was that 

SYS decreases prior to the onset of convulsions and as early as 30 minutes after exposure.  The 

depression of both HR and SYS is in agreement with previous studies which have seen similar trends in 

multiple species [23, 51, 52].  We also observed a 3.5-fold increase in the QRS interval following the 

onset of whole body convulsions, which may indicate left ventricular dysfunction [41].  Measurement of 

total glutathione levels in the cardiac tissue revealed that at 24 hours after exposure, levels were 

reduced by 50% as compared to controls.  In humans, reduced levels of both cardiac and systemic 

glutathione were found to be related to the functional status of, and structural abnormalities in, both 

symptomatic and asymptomatic heart disease.  In patients with left ventricular dysfunction glutathione 

levels were found to be decreased by over 50% compared to normal healthy adults [53].  Since 
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glutathione is the major endogenous antioxidant [42], the reduced cardiac glutathione we observed 

most likely indicates an increased reactive oxygen species (ROS) generation (and subsequent 

scavenging) due to the mitochondrial impairment of 1080.  Another factor in the decrease of cardiac 

glutathione is the potential increase in the defluorination process to rid the body of fluoroacetate [21].  

Both the reduced cardiac glutathione levels and prolonged QRS interval in exposed animals suggest left 

ventricular dysfunction [41, 53], despite the lack of pathological findings.    

The combination of substantial reductions in core body temperature in female rats exposed to 

1080, which has been previously noted in rats and other species [54-56] with some of their exhibited 

symptoms during the latency period (tongue fasciculation, frantic behavior, increased urination and 

defecation, facial tremors, tonus, clonus, and myoclonic jerk), also implicates disruption in the nervous 

system.  Mitochondrial dysfunction can impact the autonomic system, as cardiovascular autonomic 

impairment has been indicated in patients with mitochondrial disorders [57].  In the case of 1080 

poisoning, over-stimulation of the autonomic nervous system from increased metabolic acidosis has 

been implicated as the cause for many of the toxic symptoms in animals [56].  However, we did not 

observe any significant changes in the anion gap in the exposed animals, which would indicate systemic 

metabolic acidosis, although we were unable to directly measure blood pH in this study.  Generally, our 

data are in agreement with this view that 1080 impacts the autonomic nervous system and leads to 

dysautonomia in exposed rats.  

Our study was able to describe the severe and pronounced effects of sodium fluoroacetate 

poisoning on cardiopulmonary function.  Taken together both male and female rats exposed to a 

potentially lethal dose of 1080 showed indications of general cardiac and pulmonary failure, left 

ventricle dysfunction, lung hemorrhage, and dysautonomia.  Our results indicate that both tissue-

specific and systemic deficits contribute to the toxicological progression of 1080 intoxication.  Currently 

there is no approved antidote for 1080 poisoning, and clinical protocol suggests general supportive care.  
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As we evaluate potential therapeutics or treatment strategies for 1080 intoxication, it would be wise to 

consider the profound cardiopulmonary deficits and develop treatment regimens to alleviate the impact 

on the heart and lungs.        
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LD50 

(mg/kg) 
95% Confidence 

Intervals 

Male 2.08 1.73, 2.49 
Female  1.85 1.56, 2.19 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1.  Calculated median lethal dose (LD50) in male and female Sprague-Dawley rats 
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Signs  
Average Time to 
Onset (Minutes)

Standard 
Deviation

Chewing 29.9 16.5 
Oral Tonus 30.2 9.7 
Facial Tremors 33.6 16.2
Muscle Fasciculation 34.5 18.5
Scrotal Tension 35.0 29.5
Hiccup 42.2 21.6 
Excessive Grooming 44.4 20.0 
Whole-Body Shake 46.4 9.6 
Excessive Licking 47.9 32.9 
Tongue Fasciculation 52.9 37.0 
Excessive Defecation 53.2 20.4
Tonus 58.4 8.9
Frantic 62.4 27.0
Coprophagy 66.3 43.1 
Myoclonic Jerk 68.3 26.5 
Piloerection 70.3 22.4 
Head Bob 71.6 28.6 
Body Tremors 74.0 28.3 
Squinting 80.8 25.8
Opisthotonus 81.3 16.7
Convulsions 84.9 21.2
Pallor 88.3 25.5 
Ataxic 88.8 84.5 
Motion Arrest 90.0 38.2 
Retch 95.0 67.6 
Lethargy 97.0 26.9 
Salivation 103.9 38.7
Gasp 113.4 85.4
Clonus 122.5 74.2
 

Table 2.  Observable Signs of Intoxication in Male Rats. Note: not every rat experienced all of the 
observed signs. n = 2-14 
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Signs  
Average Time to 
Onset (Minutes) 

Standard 
Deviation 

Chewing 27.5 19.4 
Excessive Grooming 28.7 6.4 
Tongue Fasciculation 33.5 28.6 
Hiccup 35.1 14.5 
Frantic 36.5 23.3 
Cyanosis 42.2 37.2 
Myoclonic Jerk 44.0 24.5 
Ataxic 50.0 38.1 
Facial Tremors 51.4 23.9 
Pallor 51.5 9.2 
Body Tremors 53.4 42.4 
Motion Arrest 54.0 48.1 
Squinting  55.8 13.5 
Tonus 59.0 72.1 
Lethargy 63.6 37.6 
Excessive Defecation 63.7 40.5 
Piloerection 65.3 28.2 
Loss of Righting 78.0 38.2 
Opisthotonus 79.5 38.9 
Muscle Fasciculation 80.1 46.6 
Gasp 80.5 26.2 
Hunched Posture 82.0 77.8 
Retch 89.5 46.3 
Clonus 90.4 36.3 
Belly Down 106.6 26.1 
Head Bob 107.9 15.0 
Convulsions 112.5 4.7 
Rearing 115.3 5.1 
 

Table 3. Observable Signs of Intoxication in Female Rats. Note: not every rat experienced all of the 
observed signs. n = 2-12  
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  Control 0.85 LD50

 
Albumin (g/dl) 3.2 ± 0.3 2.8 ± 0.2* 
Alkaline Phosphatase (U/L) 369.7 ± 82.6 223.4 ± 60.1* 
Alanine Aminotransferase (U/L) 66.4 ± 8.2 135.9 ± 204.3 
Aspartate Aminotransferase (U/L) 158.7 ± 56.3 378.1 ± 329.4* 
Blood Urea Nitrogen (mg/dL) 16.4 ± 3.1 45.9 ± 29.6* 
Calcium (mg/dL) 10.7 ± 0.5 10.7 ± 0.6 
Creatine Kinase (U/L) 945.7 ± 293.8 1202 ± 854.8 
Chloride (mmol/L) 102.5 ± 1.1 99.4 ± 2.8* 
Creatinine (mg/dL) 0.4 ± 0.1 0.6 ± 0.2* 
Enzymatic Carbonate (mmol/L) 27.5 ± 2.7 28.1 ± 2.1 
Gamma-Glutamyl Transferase (U/L) 10.0 ± 0.0 10.0 ± 0.0 
Glucose (mg/dL) 353.7 ± 138.1 318.8 ± 90.6 
Potassium (mmol/L) 6.1 ± 1.1 4.7 ± 0.6* 
Lactate Dehydrogenase (U/L) 2291.8 ± 1316.2 2317.5 ± 1074.1 
Sodium (mmol/L) 140.6 ± 2.4 138.8 ± 3.5 
Total Bilirubin (mg/dL) 0.5 ± 0.6 0.2 ± 0.1 
Total Protein (g/dL) 5.3 ± 0.5 4.7 ± 0.3* 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.  Comprehensive Metabolic Panel in Male Sprague-Dawley Rats.  n = 11-16, * p < 0.05 Student’s t-test, ±
Standard Deviation, Male Rats  
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Analyte 
Control  0.85 LD50 

pg/ml 
Standard 
Deviation pg/ml 

Standard 
Deviation 

G-CSF 65.3 31.0 68.4 35.2 
IFNy 29.8 13.0 30.6 13.9 
IL-1β 11.2 2.3 16.9 10.4 
IL-6 2.8 2.8 4.2 4.2 
IL-10 53.1 31.9 62.9 48.2 
GRO-α 354.5 166.3 434.8 225.2 
MCP-1 5003.6 2559.0 4042.6 2133.6 
MIP-1α 32.4 6.9 36.8 12.1 
MCP-3 638.2 356.3 500.4 349.8 
MIP-2 11.1 2.5 14.3 4.3 
TNF-α 3.8 1.0 6.2 4.3 
Eotaxin 1734.2 1253.2 1043.4 111.9 
IL-2 10.7 3.1 25.5 25.0 
IL-4 17.3 9.0 15.5 8.6 
IL-5 38.6 23.3 30.0 18.5 
IL-12 (p70) 11.5 18.9 16.9 18.2 
IL-13 3.7 0.5 6.1 4.2 
IL-17 4.1 4.2 11.7* 3.5 
IP-10 188.4 110.0 157.6 105.3 
RANTES 15364.2 3628.2 10714.0 8749.3 
 

Table 5.  Cytokines and Chemokines in Male Rats after Exposure to 1080.  n = 8-11, *p < 0.05, Student’s 
t-test.  All cytokines and chemokines not listed were below the limit of detection. 
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